Nanomechanical and surface properties of rMSCs post-exposure to CAP treated UHMWPE wear particles

نویسندگان

  • Emily Callard Preedy
  • Stefano Perni
  • Polina Prokopovich
چکیده

UNLABELLED Wear debris generated by ultra-high molecular weight polyethylene (UHMWPE) used in joint replacement devices has been of concern due to reductions of the implant longevity. Cold atmospheric plasma (CAP) has been used to improve the wear performance of UHMWPE. Our aim was to investigate the elastic and adhesive properties of rat mesenchymal stem cells (rMSCs), through AFM, after exposure to UHMWPE wear debris pre- and post-CAP treatment. The results indicated that the main changes in cell elasticity and spring constant of MSC exposed to wear particles occurred in the first 24 h of contact and the particle concentration from 0.5 to 50 mg/l did not play a significant role. For UHMWPE treated for 7.5 min, with progression of the wear simulation the results of the CAP treated samples were getting closer to the result of untreated samples; while with longer CAP treatment this was not observed. FROM THE CLINICAL EDITOR Joint replacements are now common clinical practice. However, the use of ultra-high molecular weight polyethylene (UHMWPE) still poses a concern, due to the presence of wear debris. The authors here investigated the effects of wear debris after cold atmospheric plasma treatment on rat mesenchymal stem cells. The positive results provided new strategies in future design of joint replacement materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adhesive forces and surface properties of cold gas plasma treated UHMWPE

Cold atmospheric plasma (CAP) treatment was used on ultra-high molecular weight polyethylene (UHMWPE), a common articulating counter material employed in hip and knee replacements. UHMWPE is a biocompatible polymer with low friction coefficient, yet does not have robust wear characteristics. CAP effectively cross-links the polymer chains of the UHMWPE improving wear performance (Perni et al., A...

متن کامل

Investigation of Wear Behavior of Biopolymers for Total Knee Replacements Through Invitro Experimentation

The average life span of knee prosthesis used in Total Knee Replacement (TKR) is approximately 10 to 15 years. Literature indicates that the reasons for implant failures include wear, infection, instability, and stiffness. However, the majority of failures are due to wear and tear of the prosthesis. The most common biopolymer used in TKR  is Ultra High Molecular Weight Polyethylene (UHMWPE). Pr...

متن کامل

Anti-oxidation Treatment of Ultra High Molecular Weight Polyethylene Components to Decrease Periprosthetic Osteolysis: Evaluation of Osteolytic and Osteogenic Properties of Wear Debris Particles in a Murine Calvaria Model

Wear debris-induced osteolysis remains the greatest limitation of long-term success for total joint replacements with ultra-high molecular weight polyethylene (UHMWPE) bearings. To address oxidative degradation post-gamma irradiation, manufacturers are investigating the incorporation of antioxidants into PE resins. Similarly, larger molecular weight monomers have been developed to increase cros...

متن کامل

Biomechanical Properties of Dispersep Article Reinforced Polymer Composites on Ultrahigh Molecular Weight Polyethylene (UHMWPE)

Ultrahigh molecular weight polyethylene (UHMWPE) having a low coefficient of friction (CoF), high wearand chemical resistance in harsh environments, is used for fabricating medical products (hip and knee joints, intervertebral discs, plates for maxillofacial surgery, and others). Priority of polymers, in particular UHMWPE to be applied as medical implant materials, is due to their proximity to ...

متن کامل

Production of Dispersed Ceramic Nano-Particles in Al Alloy Using Friction Stir Processing

In this research, surface composite layers containing nano sized TiB2, Al2O3-TiB2, ZrO2 and CNT particles have been fabricated on Aluminum alloy substrates by friction stir processing. The effects of different processing variables such as number of passes and strengthening particle distribution, hardness, and wear properties of surface nano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016